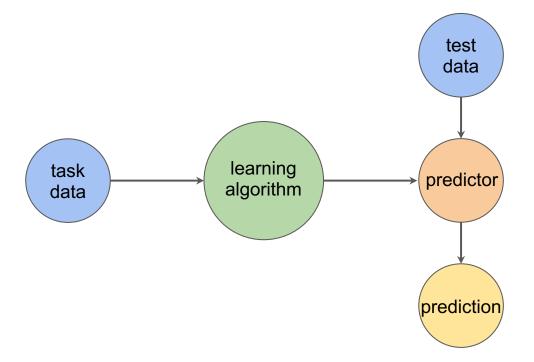


# MIT Iddo Drori, Fall 2020

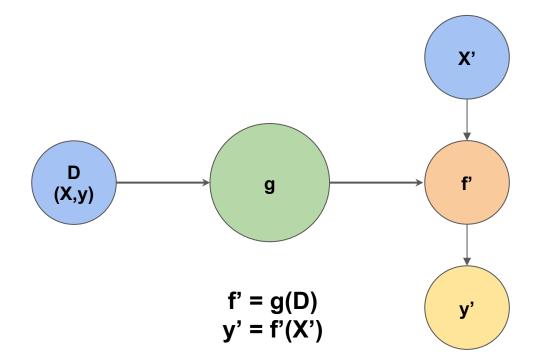


#### **Supervised Learning**





#### **Supervised Learning**





#### **Image Analogies (style transfer before CNNs)**

- Source data Ds = (Xs, Ys)
- Target data Dt = (Xt, ?)



- Source and target data distributions are the same
- Missing Yt
- Xs:Ys :: Xt:?
- Supervised learning

Xs

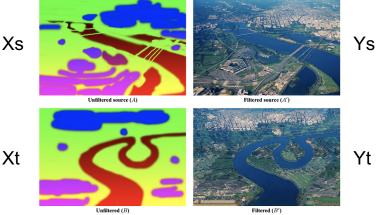
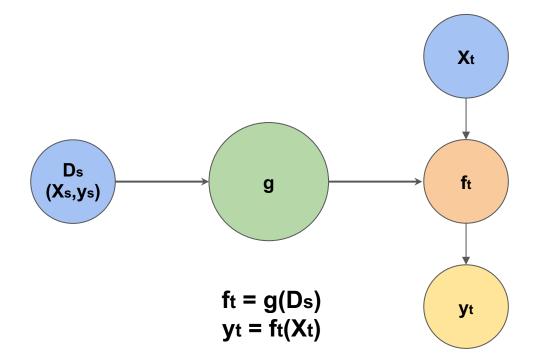


Figure source: Image Analogies, Hertzmann et al, 2001



#### **Supervised Learning**





## **CNNs Overview**



#### ImageNet

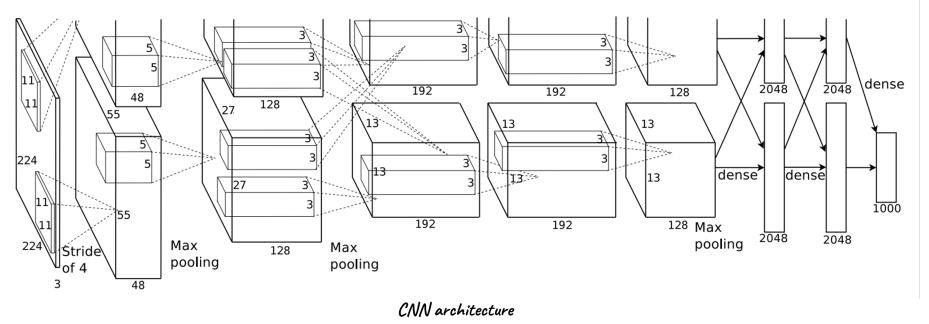
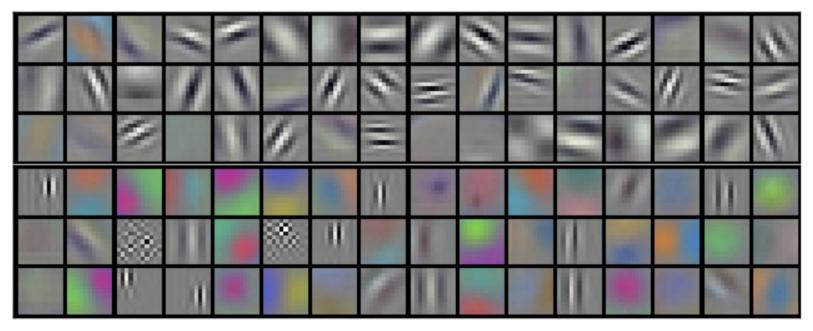


Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012

7



#### **ImageNet Filters**

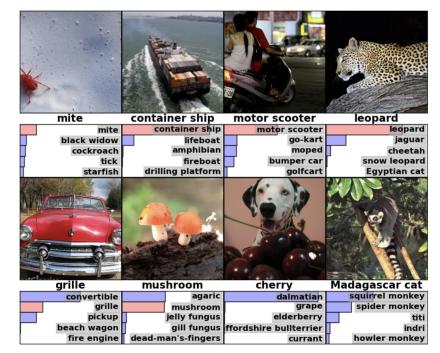


convolutional kernels of first layer

Source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012



#### **ImageNet Results**



most probable classes

Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012



#### **ImageNet Results**



test training images with last hidden layer feature vectors images closest to test feature vector

Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012





Which training image patches do specific activation units in layer 1 respond to?





Which training image patches do specific activation units in layer 2 respond to?





Which training image patches do specific activation units in layer 3 respond to?





Which training image patches do specific activation units in layer 4 respond to?





Which training image patches do specific activation units in layer 5 respond to?



#### **Input Maximizing Activation**

 $\operatorname{argmax} a_i^l(W, x)$ x

given trained network with weights W find input x which maximizes activation of unit i at leyer l starting from x as random noise perform gradient ascent on x

Source: Visualizing Higher-Layer Features of a Deep Network, Erhan et al, 2009.

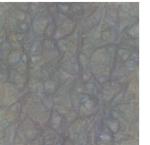


#### **Input Maximizing Activation**

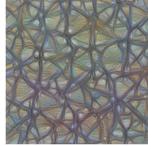




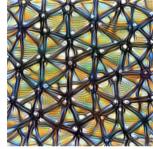
Step 4



ep 4



Step 48



Step 2048

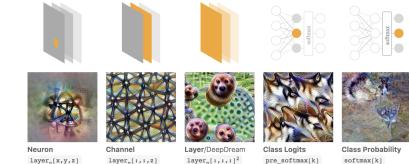
 $\rightarrow$ 

#### given trained network with weights W find input x which maximizes activation starting from x as random noise perform gradient ascent on x

 $\rightarrow$ 



### Input Maximizing Different Objectives



given trained network with weights W find input x which maximizes different objectives starting from x as random noise perform gradient ascent on x



#### **Training Patches vs. Optimization**

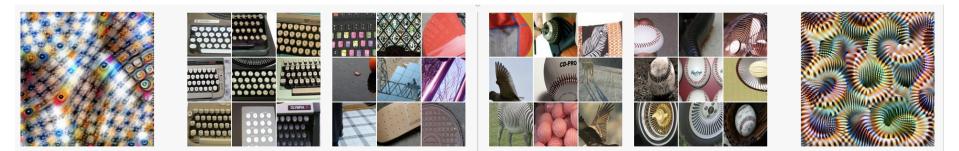


training patches maximizing activation

optimization of input maximizing activation



#### **Maximization and Minimization**



negative optimized

maximum negative patches slightly negative patches slightly positive patches

maximum positive patches positive optimized



#### **Interactions Between Activations**



optimizing activation a

joint optimization linear interpolation between objectives optimizing activation b



#### **Visualizing Every Network Activation**

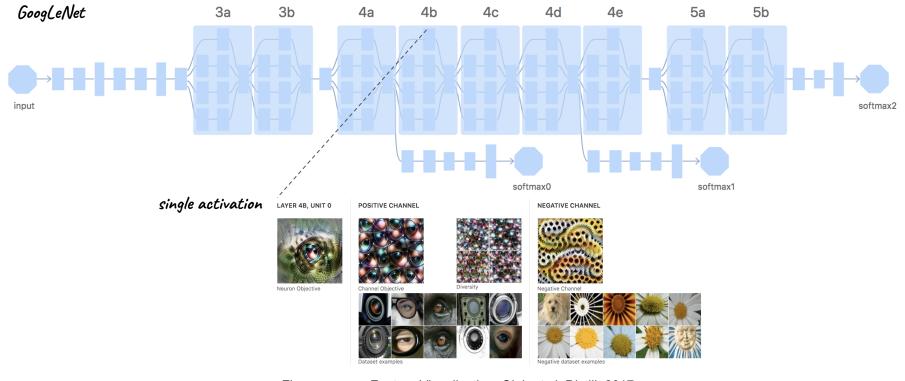
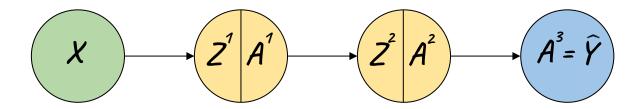


Figure source: Feature Visualization, Olah et al, Distill, 2017 https://distill.pub/2017/feature-visualization/appendix



### **Transfer Learning**

- Task 1: learn to recognize animals given many (10M) examples which are not horses
- Keep layers from task 1, re-train on last layer
- Task 2: learn to recognize horses given a few (100) examples





### Siamese Networks



### **CNN's for Face Recognition**

Problem: single example for each person.

Solution: learn similarity rather than identity.

Reduce to verification: are *xi* and *xj* the same person?

Encode x as f(x) using CNN Compare f(xi) with f(xj) by d(f(xi), f(xj))

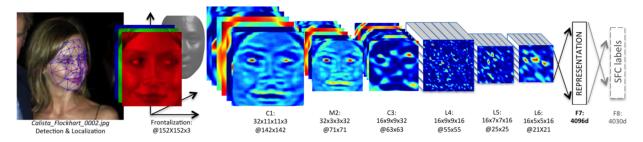


### **CNN's for Face Recognition**

#### Train on input pairs (xi, xj)

Label each pair y=1 if x and x are same person, y=0 otherwise

Use CNN encoding of pair 
$$f(x_i), f(x_j)$$
  
 $\mathcal{L}(x_i, x_j) \stackrel{\text{def}}{=} \mathcal{L}(y, y)$   $\hat{y} = g\left(d\left(f(x_i), f(x_j)\right)\right)$   
Loss function





# Style Transfer



#### **Input Maximizing Activation**

 $\operatorname{argmax} a_i^l(W, x)$ x

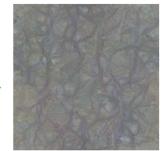
given trained network with weights W find input x which maximizes activation of unit i at leyer l starting from x as random noise perform gradient ascent on x

Source: Visualizing Higher-Layer Features of a Deep Network, Erhan et al, 2009.



#### **Input Maximizing Activation**



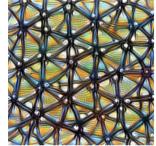


Step 0

Step 4

→

Step 48



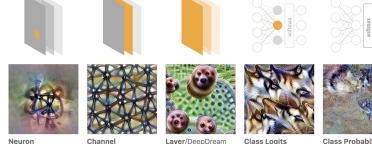
Step 2048

 $\rightarrow$ 

given trained network with weights W find input x which maximizes activation starting from x as random noise perform gradient ascent on x



### **Input Maximizing Different Objectives**



Neuron layer\_[x,y,z]

Channel layer\_[:,:,z]

Laver/DeepDream layer<sub>n</sub>[:,:,:]<sup>2</sup>

pre softmax[k]

**Class Probability** softmax[k]

#### given trained network with weights W find input x which maximizes different objectives starting from x as random noise perform gradient ascent on x



#### **Training Patches vs. Optimization**

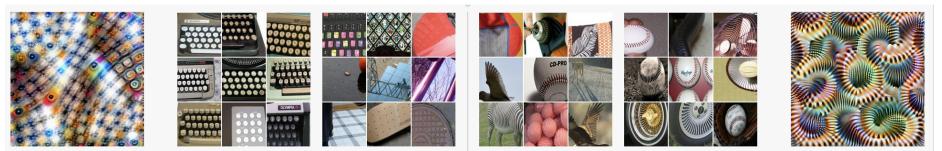


training patches maximizing activation

optimization of input maximizing activation



#### **Maximization and Minimization**



negative optimized

maximum negative patches

slightly negative patches slightly positive patches

maximum positive patches positive optimized



#### **Interactions Between Activations**

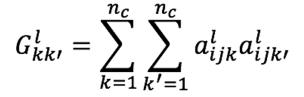


optimizing activation a

joint optimization linear interpolation between objectives optimizing activation b



#### **Gram Matrix of Channels**



Gram matrix

 $-\sum \sum \frac{g_A \cdot g_B}{\|g_A\| \|g_B\|}$ 

add term to optimization objective

Source: Feature Visualization, Olah et al, Distill, 2017 https://distill.pub/2017/feature-visualization/appendix



#### **Optimization with Gram Matrix Objective**



make results be different from each other: diversity

#### **Style Transfer**





content





style transfer

Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.

## **Style Transfer**



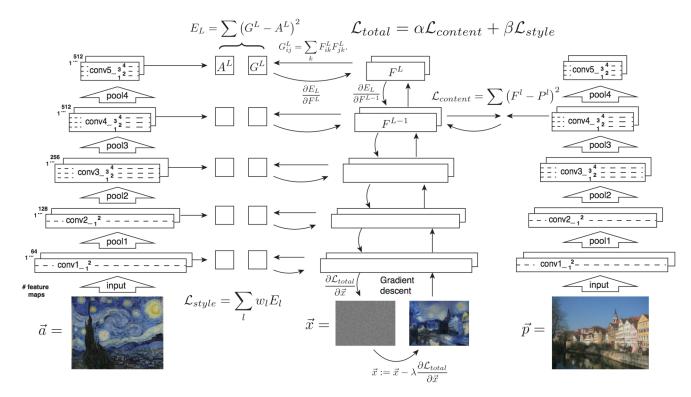


Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.



#### **Style Transfer**

$$x = x - \frac{\partial \mathcal{L}(x)}{\partial x}$$

$$\mathcal{L}(x) = \alpha \mathcal{L}_{content}(x, c) + (1 - \alpha) \mathcal{L}_{style}(x, s)$$

Initialize x to random noise or content image or style image Gradient descent with loss function a linear combination of a style and content terms

Source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.



#### **Style Transfer using Gram Matrix**

$$\mathcal{L}_{content}^{\ell}(x,c) = \frac{1}{2} \left\| a_{c}^{l} - a_{x}^{l} \right\|^{2} = \frac{1}{2} \sum_{i} \sum_{j} \left( a_{c_{ij}}^{l} - a_{x_{ij}}^{l} \right)^{2}$$

$$\mathcal{L}_{style}(x,s) = \frac{1}{(2n_w n_h n_c)^2} \lambda_l \sum_{l} \sum_{k} \sum_{k'} \left( G_{s_{kk'}}^l - G_{x_{kk'}}^l \right)^2 \qquad G_{s_{kk'}}^l = \sum_{k=1}^{n_c} \sum_{k'=1}^{n_c} a_{s_{ijk}}^l a_{s_{ijk'}}^l$$

content loss is element-wise sum of squares between activations style loss depends on correlation between activations across channels

Source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.



## **Style Transfer**



Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.



# **GANs Overview**



#### **Generative Models**

• Real data from real distribution

• Generate samples from model distribution

• Learn model distribution similar to real distribution



#### **Generative Adversarial Networks**

Photo-realistic faces synthesized using GANs: images are of high quality and diverse.



Figure source : thispersondoesnotexist.com



#### Coevolution





#### **Game Theory**

• Minimax optimization problem or saddle-point problem:

 $\underset{x}{\min}\underset{y}{\min}f(x,y)$ 



#### **Generative Adversarial Networks**



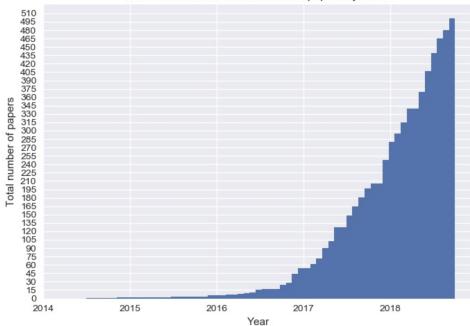
Figure source:

thiscatdoesnotexist.com

whichfaceisreal.com



#### **GAN Zoo**

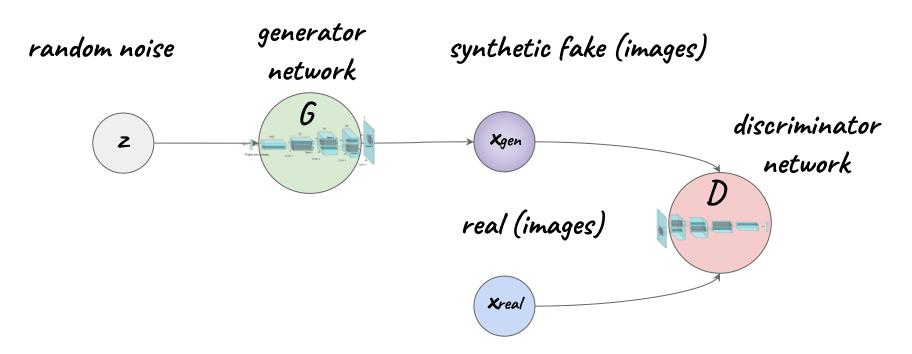


Cumulative number of named GAN papers by month

Figure source: https://github.com/hindupuravinash/the-gan-zoo



## **Generative Adversarial Network (GAN)**





## **BigGAN Results (2019)**



Figure source: Large scale GAN training for high fidelity image synthesis, Brock et al, ICLR 2019.





#### Image to Image Translation

- Source data Ds = (Xs, Ys)
- Target data Dt = (Xt, ?)
- Source and target data distributions are the same
- Target data is unlabeled
- Xs:Ys :: Xt:?
- Ys = fs(Xs) is unknown, estimate by ft
- Xs = invfs(Ys) is known, generate data pairs Ds = (Xs, Ys)
- Conditional GAN



#### Image to Image Translation

- Generate Ds = (Xs,Ys) from Ys and Xs =  $f_s^{-1}(Ys)$
- Train conditional GAN:
  - Train conditional generator ft(Xs)
  - Train discriminator on fake (ft(Xs),Xs) and real (Ys,Xs)
- Apply generator ft to target data Xt



#### **Conditional GAN**

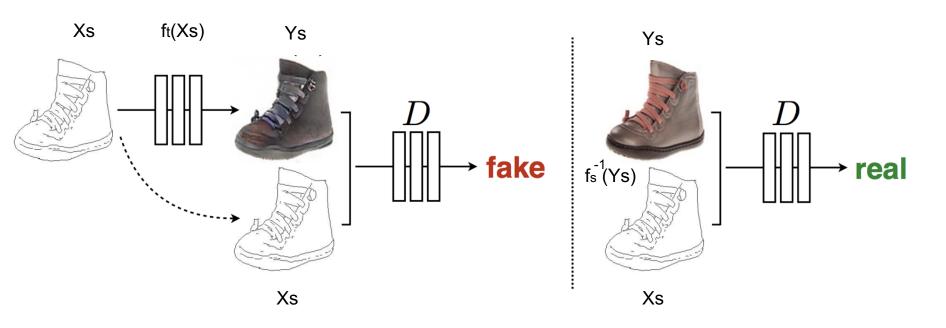


Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017.



#### **Conditional GAN**

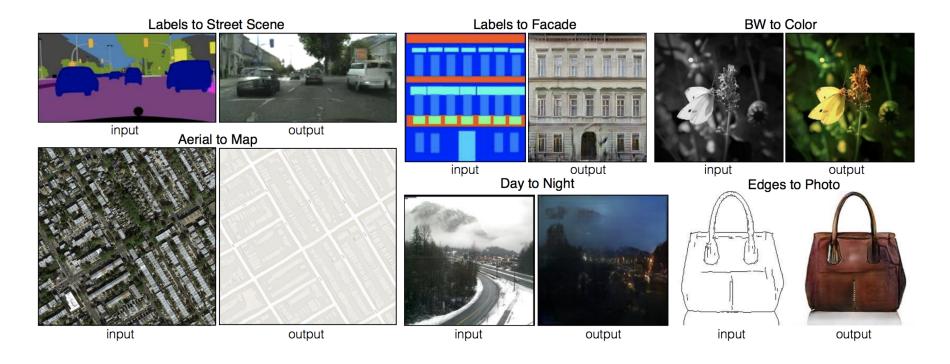


Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017.



## Application





Figure source: High-Resolution image synthesis and semantic manipulation with conditional GANs, Wang et al, 2017.



#### **Unpaired Image to Image Translation**

- Cycle GAN
- Train generator g<sub>1</sub> from Xs to Ys
- Train generator g<sub>2</sub> from Ys to Xs
- Apply g<sub>2</sub>(g<sub>1</sub>(Xs)) and check for same value
- Apply g<sub>1</sub>(g<sub>2</sub>(Ys)) and check for same value



#### **Cycle GAN**

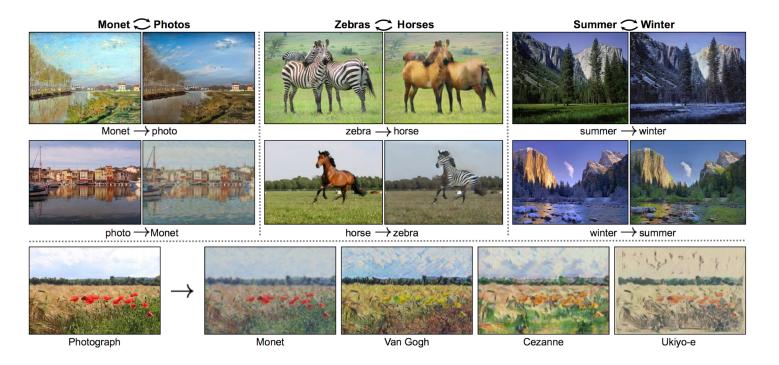


Figure source: Unpaired image-to-image translation using cycle-consistent adversarial networks (Cycle GAN), Zhu et al., ICCV 2017.



- Source data Ds = (Xs, Ys)
- Target data Dt = (Xt, Yt)
- Source and target data distributions may be different
- Target data labels may not be available



| Tasks / Distributions                        | Same source and target distributions on X | Different source and target distributions on X            |
|----------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| Same tasks on source and target domains      | Supervised learning                       | Transductive transfer learning = <b>domain adaptation</b> |
| Different tasks on source and target domains | Inductive transfer learning               | Unsupervised transfer learning                            |



| Tasks / Distributions       | Data collected from the same user | Data collected from different users                       |
|-----------------------------|-----------------------------------|-----------------------------------------------------------|
| Detect spam                 | Supervised learning               | Transductive transfer learning = <b>domain adaptation</b> |
| Detect spam vs. detect hoax | Inductive transfer learning       | Unsupervised transfer learning                            |



| Tasks / Distributions | P(Xs) = P(Xt)               | P(Xs) != P(Xt)                                            |
|-----------------------|-----------------------------|-----------------------------------------------------------|
| Ts = Tt               | Supervised learning         | Transductive transfer learning = <b>domain adaptation</b> |
| Ts != Tt              | Inductive transfer learning | Unsupervised transfer learning                            |



#### **Domain Adaptation**

- Source and target tasks are the same Ts = Tt
- Source dataset with many labeled examples
- Target dataset with few or no labeled examples



#### **Training data**

- Supervised: available labeled data
- Semi-supervised: uses both labeled and unlabeled data
- Unsupervised: only unlabeled data



#### **Domain Adaptation**

- Supervised: labeled source and labeled target data
- Unsupervised: labeled source and unlabeled target data



#### Invariance

- Most learning tasks are invariant to sets of transformations
- Classification is invariant to translation, rotation, reflection,...
- y = f(t(X)) = f(X)
- Class does not change when transforming the input by t





#### Invariance

• Data augmentation: train on larger dataset

 Work with unlabeled data: Pretext: generate classes by transformations Supervised training





#### Equivariance

- Function commutes with transformation: f(t(x)) = t(f(x))
- For example, edge detection is equivariant to translation
- Translation of input image translates the output in exactly the same way





#### **Transfer Learning Example**

- Learn policy using reinforcement learning to balance small pendulum
- Transfer to large pendulum
- Option 1: Learn policy using reinforcement learning to balance large pendulum
- Option 2: Transfer learning
- Q: What is the common information or shared structure between the tasks?
- A: in this example, the ODE that models the pendulum



- Use same representation for tasks
- What changes between tasks?
- Set of transformations t that transform one task to another
- Related tasks can be transformed from one to another using a specific set of transformations
- Equivalence class t~
- Best approximators mt1 and mt2 related in the same way as t1 and t2
- Equivariance



# **Domain Adaptation**



#### Adversarial Unsupervised Domain Adaptation

- Train GAN generator from source to target
- Train classifier on mapped source and source labels
- Apply classifier to target



#### Adversarial Unsupervised Domain Adaptation

- Ds = (Xs, Ys) for example simulated data
- Dt = (Xt, ?) for example real data
- Train GAN generator from source Xs to target Xt
   Xt = g(Xs)
- Train GAN discriminator d(g(Xs), Xt)
- Train classifier on (g(Xs), Ys)
- Apply classifier on Xt



#### SimGAN

- Train GAN generator from synthetic to real images
- Train classifier on mapped synthetic and synthetic labels
- Apply classifier to real images

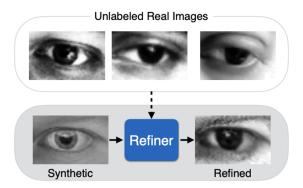


Figure source: Learning from simulated and unsupervised images through adversarial training, Shrivastava et al, CVPR 2017



#### SeUDA

- Ds = (Xs, Ys) for example simulated data
- Dt = (Xt, ?) for example real data
- Train GAN generator from target Xt to source Xs
   Xs = g(Xt)
- Train classifier on (Xs, Ys)
- Apply generator to g(Xt) and classify source domain

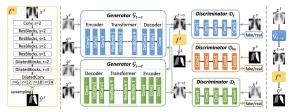


Figure source: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation, Cheng et al, 2018



#### ADDA

- Ds = (Xs, Ys), Ys = fs(Xs)
- $LA(Ds) = f_2(f_1(Xs))$
- Train f1 CNN and f2 classifier on Ds
- Train f'1 CNN on Xt using discriminator d(f1(Xs),f'1(Xt))
- Apply f2(f'1(Xt))

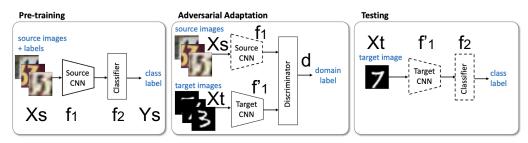
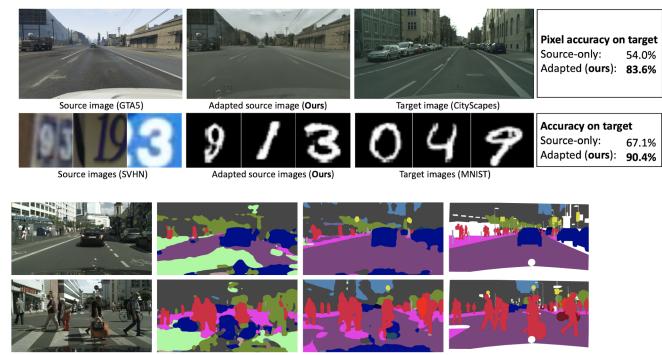


Figure source: Adversarial discriminative domain adaptation, Tzeng et al, CVPR 2017



#### Cycada

CycleGAN



(a) Test Image (b) Source Prediction (c) CyCADA Prediction (d) Ground Truth

Figure source: CyCADA: Cycle-Consistent Adversarial Domain Adaptation, Hoffman et al, 2018



# MIT Iddo Drori, Fall 2020