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Supervised Learning

@ g ; f,
f = g(D)
y' = F(X)
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Image Analogies (style transfer before CNNs)

« Source data Ds = (Xs, Ys) NNE
« Target data Dt = (Xt, ?) | " E
« Source and target data distributions are the same
 Missing Yt

e Xs:Ys : Xt:?

e Supervised learning

Figure source: Image Analogies, Hertzmann et al, 2001
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Supervised Learning

@ g ; ft
ft = g(Ds)
yt = ft(Xt)
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CNNs Overview
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ImageNet
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Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012
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ImageNet Filters

convolutional kernele of firct layer

Source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012



ImageNet Results
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Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012
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ImageNet Results
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Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012
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Understanding ImageNet

Which training image patches do specific activation unite in layer 1 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.

11



I I Massachusetts Institute of Technology

Understanding ImageNet
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Which training image patches do specific activation unite in layer 2 regpond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
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Understanding ImageNet

Which training image patches do specific activation unite in layer 3 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
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Which training image patches do specific activation unite in layer 4 respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.
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Understanding ImageNet

Which training image patches do specific activation unite in layer S respond to?

Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.

15



I I H I Massachusetts Institute of Technology

Input Maximizing Activation

argmaxa. (W, x)
X

given trained network with weighte W/
find input x which maximizes activation of unit i at leyer [

starting from x as random noise perform gradient accent on x

Source: Visualizing Higher-Layer Features of a Deep Network, Erhan et al, 2009.
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Input Maximizing Activation

Step 0 Step 4 Step 48 Step 2048

given trained network with weighte W/
find input x which maximizes activation

ctarting from x ac random noice perform gradient accent on x

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Input Maximizing Different Objectives

Class Probability
layer,[x,Y,2] layer;[:,:,2] layern[:,:,:]2 pre_softmax[k] softmax([k]

Neuron Channel

given trained network with weighte U/
find input x which maximizes different objectives

ctarting from x ac random noice perform gradient accent on x

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Training Patches vs. Optimization

training patches maximizing activation

optimization of input maximizing activation

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Maximization and Minimization
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patchee patches patchee patchee

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Interactions Between Activations

optimizing activatlion a Joint optimization optimizing activation b

linear interpolation between objectives

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Visualizing Every Network Activation
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Figure source: Feature Visualization, Olah et al, Distill, 2017
https://distill.pub/2017/feature-visualization/appendix 22
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Transfer Learning

Task 1: learn to recognize animals given many (10M)
examples which are not horses

Keep layers from task 1, re-train on last layer
Task 2: learn to recognize horses given a few (100) examples

@@
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Siamese Networks
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CNN'’s for Face Recognition

Problem: single example for each person.
Solution: learn similarity rather than identity.

Reduce to verification: are x;and xj the same person?

Encode xas f{(x) using CNN
Compare F(x) with F(x) by d(F(x), F(xi))

25
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CNN'’s for Face Recognition
Train on input pairs (xi, xi)

Label each pair y=7 if x'and xj are same person, y=0
otherwise

Use CNN encofb}gi? ﬂail%@,%j y=g (d (f(xi):f(xj)))

Loss functinn
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Figure source: Taigman et al, 26
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Style Transfer
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Input Maximizing Activation

argmaxa. (W, x)
X

given trained network with weighte W/
find input x which maximizes activation of unit i at leyer [

starting from x as random noise perform gradient accent on x

Source: Visualizing Higher-Layer Features of a Deep Network, Erhan et al, 2009.
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Input Maximizing Activation

Step 0 Step 4 Step 48 Step 2048

given trained network with weighte W/
find input x which maximizes activation

ctarting from x ac random noice perform gradient accent on x

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Input Maximizing Different Objectives

Class Probability
layer,[x,Y,2] layer;[:,:,2] layern[:,:,:]2 pre_softmax[k] softmax([k]

Neuron Channel

given trained network with weighte U/
find input x which maximizes different objectives

ctarting from x ac random noice perform gradient accent on x

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Training Patches vs. Optimization

optimization of input maximizing activation

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Maximization and Minimization
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patchee patches patchee patchee

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Interactions Between Activations

optimizing activatlion a Joint optimization optimizing activation b

linear interpolation between objectives

Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Gram Matrix of Channels
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Source: Feature Visualization, Olah et al, Distill, 2017
https://distill.pub/2017 [feature-visualization/appendix
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Optimization with Gram Matrix Objective

make resulte be different from each other: diversity

Figure source: Feature Visualization, Olah et al, Distill, 2017
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Style Transfer L [T

content style style transfer

Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.
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Style Transfer L [T
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Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.
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Style Transfer

dL(x)
- ox

L(x) = aLloontent(x,¢) + (1 — a)Lstyle (x,s)

Initialize x to random noice or content image or style image

Gradient deccent with loce function a linear combination of a style and content terms

Source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.
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Style Transfer using Gram Matrix

'
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Source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.
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Style Transfer

Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016. 40
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GANSs Overview
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Generative Models
 Real data from real distribution
» Generate samples from model distribution

 Learn model distribution similar to real distribution

42
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Generative Adversarial Networks

Photo-realistic faces synthesized using GANs: images are of high quality and diverse.

e p
p — < 4 y

Figure source : thispersondoesnotexist.com 43
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Coevolution

44
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Game Theory

* Minimax optimization problem or saddle-point problem:

minmaxf(x, y)

45
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Generative Adversarial Networks

Figure source: thiscatdoesnotexist.com whichfaceisreal.com
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GAN Zoo

Total number of papers

Cumulative number of named GAN papers by month

Year

Figure source: https://github.com/hindupuravinash/the-gan-zoo
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Generative Adversarial Network (GAN)

generator

cynthetic fake (imagec)

random noice

network

diceriminator

network
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BigGAN Results (2019)

Figure source: Large scale GAN training for high fidelity image synthesis, Brock et al, ICLR 2019.
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Transfer Learning



IIIHI- Massachusetts Institute of Technol ogy
Image to Image Translation

« Source data Ds = (Xs, Ys)

« Target data Dt = (Xt, ?)

« Source and target data distributions are the same

« Target data is unlabeled

¢ Xs:Ys : Xt:?

* Ys = fs(Xs) is unknown, estimate by ft

« Xs =invfs(Ys) is known, generate data pairs Ds = (Xs, Ys)
« Conditional GAN
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Image to Image Translation

* Generate Ds = (Xs,Ys) from Ys and Xs = fé1(Ys)
« Train conditional GAN:

— Train conditional generator ft(Xs)

— Train discriminator on fake (ft(Xs),Xs) and real (Ys,Xs)
* Apply generator ft to target data Xt
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Conditional GAN

— real

Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017.

53



I I I N .
I I Massachusetts Institute of Technology

Conditional GAN

Labels to Street Scene Labels to Facade BW to Color

input . output
P r|aI to Map P

4
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Day to Night Edges to Photo
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Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017. 54
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Application

Figure source: High-Resolution image synthesis and semantic manipulation with conditional GANs, Wang et al, 2017. 55
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Unpaired Image to Image Translation

 Cycle GAN

« Train generator g1 from Xs to Ys

* Train generator g2 from Ys to Xs

* Apply g2(g1(Xs)) and check for same value
* Apply g1(gz2(Ys)) and check for same value
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Cycle GAN

Monet 7_ Photos Zebras _ Horses Summer _ Winter
. _ - Yo ~ . S

zebra —) horse

Photograph Van Gogh Cezanne

Figure source: Unpaired image-to-image translation using cycle-consistent adversarial networks (Cycle GAN), Zhu et al., ICCV 2017.
57



I I I H I- Massachusetts Institute of Technol ogy
Transfer Learning

« Source data Ds = (Xs, Ys)

« Target data Dt = (Xt, Yt)

« Source and target data distributions may be different
« Target data labels may not be available



Transfer Learning

Tasks / Distributions
Same tasks on source and
target domains

Different tasks on source and
target domains

Same source and target
distributions on X

Supervised learning

Inductive transfer learning

I I H I Massachusetts Institute of Technology

Different source and target
distributions on X

Transductive transfer learning =
domain adaptation

Unsupervised transfer learning



Transfer Learning

Tasks / Distributions

Detect spam

Detect spam vs. detect hoax

Data collected from the same user

Supervised learning

Inductive transfer learning

I I H I Massachusetts Institute of Technology

Data collected from different
users

Transductive transfer learning =
domain adaptation

Unsupervised transfer learning



Transfer Learning

Tasks / Distributions

Ts =Tt

Ts =Tt

P(Xs) = P(Xt)

Supervised learning

Inductive transfer learning

I I |:| I Massachusetts Institute of Technology

P(Xs) != P(Xt)

Transductive transfer learning =
domain adaptation

Unsupervised transfer learning



I I I N .
’ [ I Massachusetts Institute of Technology

Domain Adaptation

« Source and target tasks are the same Ts = Tt
« Source dataset with many labeled examples
« Target dataset with few or no labeled examples
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Training data

« Supervised: available labeled data
« Semi-supervised: uses both labeled and unlabeled data
« Unsupervised: only unlabeled data
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Domain Adaptation

« Supervised: labeled source and labeled target data
* Unsupervised: labeled source and unlabeled target data
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Invariance

« Most learning tasks are invariant to sets of transformations
« Classification is invariant to translation, rotation, reflection,..

Yy = (t(X)) = f(X)
« Class does not change when transforming the input by t
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Invariance

- Data augmentation: train on larger dataset

« Work with unlabeled data:
Pretext: generate classes by transformations
Supervised training
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Equivariance

* Function commutes with transformation: f(t(x)) = t(f(x))

 For example, edge detection is equivariant to translation

« Translation of input image translates the output in exactly
the same way
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Transfer Learning Example

* Learn policy using reinforcement learning to balance small
pendulum

* Transfer to large pendulum

« Option 1: Learn policy using reinforcement learning to
balance large pendulum

« Option 2: Transfer learning

* Q: What is the common information or shared structure

between the tasks?

A: in this example, the ODE that models the pendulum
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Transfer Learning

« Use same representation for tasks

 What changes between tasks?

« Set of transformations t that transform one task to another

* Related tasks can be transformed from one to another
using a specific set of transformations

* Equivalence class t~

« Best approximators mt1 and mt2 related in the same way
as t1 and t2

« Equivariance
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Domain Adaptation
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Adversarial Unsupervised Domain Adaptation

« Train GAN generator from source to target
* Train classifier on mapped source and source labels
* Apply classifier to target
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Adversarial Unsupervised Domain Adaptation

 Ds = (Xs, Ys) for example simulated data

« Dt=(Xt, ?)for example real data

« Train GAN generator from source Xs to target Xt
— Xt=g(Xs)

« Train GAN discriminator d(g(Xs), Xt)

« Train classifier on (g(Xs), Ys)

* Apply classifier on Xt
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SimGAN

« Train GAN generator from synthetic to real images
« Train classifier on mapped synthetic and synthetic labels
* Apply classifier to real images

Unlabeled Real Images

ot S
e B

Synthetic Refined

Figure source: Learning from simulated and unsupervised images through adversarial training, Shrivastava et al, CVPR 2017
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SeUDA

 Ds = (Xs, Ys) for example simulated data
« Dt=(Xt, ?)for example real data
« Train GAN generator from target Xt to source Xs
Xs = g(Xt)
« Train classifier on (Xs, Ys)
* Apply generator to g(Xt) and cIaSS|fy source domain
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Figure source: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation, Cheng et al, 2018
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ADDA

« Ds=(Xs, Ys), Ys =1fs(Xs)

« LA(Ds) = f2(f1(Xs))

« Train f1 CNN and f2 classifier on Ds

« Train f1 CNN on Xt using discriminator d(f1(Xs),f'1(Xt))

+ Apply f2(f1(Xt))

Xs f1 fo Ys‘

Figure source: Adversarial discriminative domain adaptation, Tzeng et al, CVPR 2017



I I I N .
I I Massachusetts Institute of Technology

Cycada

Pixel accuracy on target
Source-only: 54.0%
Adapted (ours): 83.6%

 CycleGAN

- -
Source image (GTA5) Adapted source image (Ours) Target image (CityScapes)

9 /304 2

Adapted source images (Ours) Target images (MNIST)

Accuracy on target
Source-only: 67.1%
Adapted (ours): 90.4%

Source images (SVHN)

(a) Test Image (b) Source Prediction (c) CyCADA Prediction (d) Ground Truth

Figure source: CyCADA: Cycle-Consistent Adversarial Domain Adaptation, Hoffman et al, 2018
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