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Supervised Learning
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Image Analogies (style transfer before CNNs)

• Source data Ds = (Xs, Ys)
• Target data Dt = (Xt, ?)
• Source and target data distributions are the same
• Missing Yt
• Xs:Ys :: Xt:?
• Supervised learning

Figure source: Image Analogies, Hertzmann et al, 2001
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Supervised Learning

g ft
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CNNs Overview
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Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012

CNN architecture

ImageNet
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Source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012

convolutional kernels of first layer

ImageNet Filters



ImageNet Results
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Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012

most probable classes
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Figure source: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al, NIPS 2012

test
images

training images with last hidden layer feature vectors
closest to test feature vector

ImageNet Results 
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Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.

Which training image patches do specific activation units in layer 1 respond to?

Understanding ImageNet



Understanding ImageNet
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Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.

Which training image patches do specific activation units in layer 2 respond to?



Understanding ImageNet
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Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.

Which training image patches do specific activation units in layer 3 respond to?



Understanding ImageNet
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Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.

Which training image patches do specific activation units in layer 4 respond to?



Understanding ImageNet
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Figure source: Visualizing and understanding convolutional networks, Zeiler and Fergus, ECCV 2014.

Which training image patches do specific activation units in layer 5 respond to?



Input Maximizing Activation
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Source: Visualizing Higher-Layer Features of a Deep Network, Erhan et al, 2009.

given trained network with weights W
find input x which maximizes activation of unit i at leyer l

starting from x as random noise perform gradient ascent on x 



Input Maximizing Activation
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Figure source: Feature Visualization, Olah et al, Distill, 2017.

given trained network with weights W
find input x which maximizes activation

starting from x as random noise perform gradient ascent on x 



Input Maximizing Different Objectives

18

Figure source: Feature Visualization, Olah et al, Distill, 2017.

given trained network with weights W
find input x which maximizes different objectives

starting from x as random noise perform gradient ascent on x 



Training Patches vs. Optimization

19

Figure source: Feature Visualization, Olah et al, Distill, 2017.

training patches maximizing activation

optimization of input maximizing activation



Maximization and Minimization
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Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Interactions Between Activations
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Figure source: Feature Visualization, Olah et al, Distill, 2017.

joint optimization
linear interpolation between objectives

optimizing activation a optimizing activation b



Visualizing Every Network Activation
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Figure source: Feature Visualization, Olah et al, Distill, 2017

https://distill.pub/2017/feature-visualization/appendix

GoogLeNet

single activation



Transfer Learning
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• Task 1: learn to recognize animals given many (10M) 
examples which are not horses

• Keep layers from task 1, re-train on last layer
• Task 2: learn to recognize horses given a few (100) examples

X YA A
1 2 A =

3
Z

1
Z

2



Siamese Networks



CNN’s for Face Recognition
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Problem: single example for each person.
Solution: learn similarity rather than identity.

Reduce to verification: are xi and xj the same person?

Encode x as f(x) using CNN

Compare f(xi) with f(xj) by d(f(xi), f(xj))



CNN’s for Face Recognition
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Train on input pairs (xi, xj)
Label each pair y=1  if xi and xj are same person, y=0
otherwise
Use CNN encoding of pair f(xi), f(xj)
Loss function

Figure source: Taigman et al, 
2014



Style Transfer



Input Maximizing Activation
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Source: Visualizing Higher-Layer Features of a Deep Network, Erhan et al, 2009.

given trained network with weights W
find input x which maximizes activation of unit i at leyer l

starting from x as random noise perform gradient ascent on x 



Input Maximizing Activation
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Figure source: Feature Visualization, Olah et al, Distill, 2017.

given trained network with weights W
find input x which maximizes activation

starting from x as random noise perform gradient ascent on x 



Input Maximizing Different Objectives
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Figure source: Feature Visualization, Olah et al, Distill, 2017.

given trained network with weights W
find input x which maximizes different objectives

starting from x as random noise perform gradient ascent on x 



Training Patches vs. Optimization
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Figure source: Feature Visualization, Olah et al, Distill, 2017.

training patches maximizing activation

optimization of input maximizing activation



Maximization and Minimization
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Figure source: Feature Visualization, Olah et al, Distill, 2017.
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Interactions Between Activations
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Figure source: Feature Visualization, Olah et al, Distill, 2017.

joint optimization
linear interpolation between objectives

optimizing activation a optimizing activation b



Gram Matrix of Channels
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Source: Feature Visualization, Olah et al, Distill, 2017
https://distill.pub/2017/feature-visualization/appendix

Gram matrix

add term to optimization objective



Optimization with Gram Matrix Objective
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Figure source: Feature Visualization, Olah et al, Distill, 2017

make results be different from each other: diversity



Style Transfer
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Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.

content style style transfer



Style Transfer
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Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.



Style Transfer
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Source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.

Initialize x to random noise or content image or style image
Gradient descent with loss function a linear combination of a style and content terms



Style Transfer using Gram Matrix
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Source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.

content loss is element-wise sum of squares between activations
style loss depends on correlation between activations across channels



Style Transfer
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Figure source: Image style transfer using convolutional neural networks, Gatys et al, CVPR 2016.



GANs Overview



• Real data from real distribution

• Generate samples from model distribution

• Learn model distribution similar to real distribution

Generative Models
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Generative Adversarial Networks

43Figure source : thispersondoesnotexist.com

Photo-realistic faces synthesized using GANs: images are of high quality and diverse.



Coevolution
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Game Theory
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• Minimax optimization problem or saddle-point problem:



Generative Adversarial Networks
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Figure source: thiscatdoesnotexist.com whichfaceisreal.com



GAN Zoo

47Figure source: https://github.com/hindupuravinash/the-gan-zoo



Generative Adversarial Network (GAN)
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BigGAN Results (2019)
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Figure source: Large scale GAN training for high fidelity image synthesis, Brock et al, ICLR 2019.



Transfer Learning



Image to Image Translation

• Source data Ds = (Xs, Ys)
• Target data Dt = (Xt, ?)
• Source and target data distributions are the same
• Target data is unlabeled
• Xs:Ys :: Xt:?
• Ys = fs(Xs) is unknown, estimate by ft
• Xs = invfs(Ys) is known, generate data pairs Ds = (Xs, Ys) 
• Conditional GAN



Image to Image Translation

• Generate Ds = (Xs,Ys) from Ys and Xs = fs (Ys)
• Train conditional GAN:

– Train conditional generator ft(Xs)
– Train discriminator on fake (ft(Xs),Xs) and real (Ys,Xs)

• Apply generator ft to target data Xt 

-1



Conditional GAN
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Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017.

Ys

XsXs

fs (Ys)

Ysft(Xs)Xs

-1



Conditional GAN
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Figure source: Image-to-image translation with conditional adversarial networks, Isola et al, CVPR 2017.



Application
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Figure source: High-Resolution image synthesis and semantic manipulation with conditional GANs, Wang et al, 2017.



Unpaired Image to Image Translation

• Cycle GAN
• Train generator g1 from Xs to Ys
• Train generator g2 from Ys to Xs
• Apply g2(g1(Xs)) and check for same value
• Apply g1(g2(Ys)) and check for same value



Cycle GAN
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Figure source: Unpaired image-to-image translation using cycle-consistent adversarial networks (Cycle GAN), Zhu et al., ICCV 2017.



Transfer Learning

• Source data Ds = (Xs, Ys)
• Target data Dt = (Xt, Yt)
• Source and target data distributions may be different
• Target data labels may not be available



Transfer Learning

Tasks / Distributions Same source and target 
distributions on X

Different source and target 
distributions on X

Same tasks on source and 
target domains

Supervised learning Transductive transfer learning = 
domain adaptation

Different tasks on source and 
target domains

Inductive transfer learning Unsupervised transfer learning



Transfer Learning

Tasks / Distributions Data collected from the same user Data collected from different 
users

Detect spam Supervised learning Transductive transfer learning = 
domain adaptation

Detect spam vs. detect hoax Inductive transfer learning Unsupervised transfer learning



Transfer Learning

Tasks / Distributions P(Xs) = P(Xt) P(Xs) != P(Xt)

Ts = Tt Supervised learning Transductive transfer learning = 
domain adaptation

Ts != Tt Inductive transfer learning Unsupervised transfer learning



Domain Adaptation

• Source and target tasks are the same Ts = Tt
• Source dataset with many labeled examples
• Target dataset with few or no labeled examples



Training data

• Supervised: available labeled data 
• Semi-supervised: uses both labeled and unlabeled data
• Unsupervised: only unlabeled data



Domain Adaptation

• Supervised: labeled source and labeled target data 
• Unsupervised: labeled source and unlabeled target data



Invariance

• Most learning tasks are invariant to sets of transformations
• Classification is invariant to translation, rotation, reflection,.. 
• y = f(t(X)) = f(X)
• Class does not change when transforming the input by t



Invariance

• Data augmentation: train on larger dataset

• Work with unlabeled data:
Pretext: generate classes by transformations
Supervised training



Equivariance

• Function commutes with transformation: f(t(x)) = t(f(x))
• For example, edge detection is equivariant to translation
• Translation of input image translates the output in exactly 

the same way



Transfer Learning Example

• Learn policy using reinforcement learning to balance small 
pendulum

• Transfer to large pendulum
• Option 1: Learn policy using reinforcement learning to 

balance large pendulum
• Option 2: Transfer learning
• Q: What is the common information or shared structure 

between the tasks?
• A: in this example, the ODE that models the pendulum



Transfer Learning

• Use same representation for tasks
• What changes between tasks?
• Set of transformations t that transform one task to another
• Related tasks can be transformed from one to another 

using a specific set of transformations
• Equivalence class t~
• Best approximators mt1 and mt2 related in the same way 

as t1 and t2
• Equivariance



Domain Adaptation



Adversarial Unsupervised Domain Adaptation

• Train GAN generator from source to target
• Train classifier on mapped source and source labels
• Apply classifier to target



Adversarial Unsupervised Domain Adaptation

• Ds = (Xs, Ys) for example simulated data
• Dt = (Xt, ?) for example real data
• Train GAN generator from source Xs to target Xt

– Xt = g(Xs)
• Train GAN discriminator d(g(Xs), Xt)
• Train classifier on (g(Xs), Ys)
• Apply classifier on Xt



SimGAN 

• Train GAN generator from synthetic to real images
• Train classifier on mapped synthetic and synthetic labels
• Apply classifier to real images

Figure source: Learning from simulated and unsupervised images through adversarial training, Shrivastava et al, CVPR 2017



SeUDA

• Ds = (Xs, Ys) for example simulated data
• Dt = (Xt, ?) for example real data
• Train GAN generator from target Xt to source Xs

– Xs = g(Xt)
• Train classifier on (Xs, Ys)
• Apply generator to g(Xt) and classify source domain

Figure source: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation, Cheng et al, 2018



ADDA

• Ds = (Xs, Ys), Ys = fs(Xs)
• LA(Ds) = f2(f1(Xs))
• Train f1 CNN and f2 classifier on Ds
• Train f’1 CNN on Xt using discriminator d(f1(Xs),f’1(Xt))
• Apply f2(f’1(Xt))

Figure source: Adversarial discriminative domain adaptation, Tzeng et al, CVPR 2017

Xs Ysf1 f2
Xt f’1

f1Xs
d

f’1 f2Xt



Cycada

• CycleGAN 

Figure source: CyCADA: Cycle-Consistent Adversarial Domain Adaptation, Hoffman et al, 2018
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